首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   8篇
  国内免费   2篇
测绘学   9篇
大气科学   6篇
地球物理   49篇
地质学   66篇
海洋学   3篇
天文学   1篇
综合类   2篇
自然地理   14篇
  2024年   1篇
  2022年   6篇
  2021年   5篇
  2020年   11篇
  2019年   8篇
  2018年   18篇
  2017年   8篇
  2016年   15篇
  2015年   15篇
  2014年   7篇
  2013年   14篇
  2012年   4篇
  2011年   16篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有150条查询结果,搜索用时 671 毫秒
91.
One of the primary geotechnical problems encountered during tunnel construction involves the inflow of groundwater into the tunnel. Heavy inflows make tunnel construction difficult and result in higher costs and delays in construction period. Therefore, it is essential to estimate the volume and rate of water inflow that is likely to appear in the tunnel. In this research, water inflow to the tunnel was calculated using numerical hydromechanical analysis. Effect of rock mass properties including fracture characteristics (normal and shear stiffness, hydraulic aperture, dilation angle, and fracture nonlinear behavior) on inflow was studied using a two-dimensional distinct element method. Results show that fracture properties play important role in inflow to the tunnel and must be considered in prediction of inflow to the tunnel. Based on numerical analysis results, inflow of groundwater into the tunnel increases with the increasing of normal and shear stiffness, dilation angle, and hydraulic aperture of rock mass fractures. The measured inflow with considering nonlinear fracture behavior was more than the calculated inflow with linear constitutive behavior.  相似文献   
92.
Intentional and/or accidental volatile organic compound (VOC) spill into water bodies may lead to severe contamination and health problems in water infrastructures. The importance and widespread use of petroleum products and the threats posed by these products on surface water resources in Iran necessitates the access to numerical hydrodynamic and water quality simulation models with appropriate capabilities. Simulation the fate and transport of VOC in both flowing and standing water bodies is a fairly complex problem. In this research, CE-QUAL-W2 model is modified to simulate the fate and transport of VOC [i.e., Methyl tert-butyl ether (MTBE), benzene] in standing and flowing water bodies. The performance of the modified CE-QUAL-W2 model is evaluated in a MTBE pollution spill at Khalife-Tarkhan river along the headwaters of Gheshlagh reservoir, Kordestan, Iran. The results show the modified CE-QUAL-W2 model’s capability to depict the spatial and temporal variation of MTBE in comparison with recorded data from MTBE spill event of Gheshlagh reservoir. Based on the simulation results of modified CE-QUAL-W2 model, reservoir cleanup time in different meteorological and hydrological scenarios is evaluated. The results show Gheshlagh reservoir cleanup time reduced in scenarios that included air temperature reduction, wind speed increasing, and high inflow condition.  相似文献   
93.
Breakwaters provide a calm sea basin for ships and protect harbor facilities by reflecting wave energy toward the open sea area. Their performance under environmental loadings is the main concern for coastal engineers. Liquefaction susceptibility of loose sediments of seabed threatens performance of these structures. The article investigates soil liquefaction effects on the seismic performance of Iran liquefied natural gas (LNG) composite breakwater. Performance-based design method, considering both grade of the breakwater and acceptable level of damages, was selected as design philosophy. Liquefaction-induced damages to the breakwater were determined by numerical analysis. Since the obtained level of deformations did not meet allowable damages, soil improvement against liquefaction was considered. Different improvement patterns were proposed based on distribution of pore pressure ratio (ru) beneath the breakwater to control its seismic performance. This investigation revealed that the most important area for soil improvement is located near the toes of breakwater to control the slope instability and performance of the breakwater.  相似文献   
94.
Fracture zones on the Earth’s surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising.In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data.Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.  相似文献   
95.
1 INTRODUCTION Scouring in the bend ways leads to deep sections at the toe of the outer bank of the bend. The presenceof secondary currents and the greater depths at the outer bank cause high velocity along the outer bank.The high velocity and shear stres…  相似文献   
96.
Efficient procedures for reliability upgrading of existing lifeline networks for post-earthquake serviceability are presented. A simple method is developed to determine critical components of the network whose strengthening improves the network reliability for specified serviceability criteria. Measures of effectiveness of strengthening each component are also introduced. Based on critical components and measures of effectiveness, step-by-step upgrading procedures are proposed. Both connectivity and minimum-flow serviceability criteria may be specified. Two upgrading objectives considered are achieving a specified target reliability and reducing the total costs of upgrading plus expected losses due to failure of the lifeline. A hypothetical application to a water-distribution system in the San Francisco Bay Area illustrates the proposed method.  相似文献   
97.
The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials. Received: 7 April 1997 / Accepted: 30 July 1997  相似文献   
98.
99.
Calc-alkaline arc magmatism at convergent plate margins is volumetrically dominated by metaluminous andesites. Many studies highlighted the importance of differentiation via fractionation processes of arc magmas, but only in the last decades, it has been demonstrated that not all rock-forming minerals may affect the evolution of calc-alkaline suites. In particular, a major role exerted by Al-rich hornblende amphibole as fractionating mineral phase has been documented in many volcanic arc settings. The aim of this work is to understand the role of the Tschermak molecule (CaAlAlSiO6) hosted in the hornblende and plagioclase fractionation assemblage in driving magma differentiation in calc-alkaline magmatic suites. We explore this issue by applying replenishment–fractional crystallization (RFC) and rare earth element–Rayleigh fractional crystallization (REE-FC) modeling to the Sabzevar Eocene (ca. 45–47 Ma) calc-alkaline volcanism of NE Central Iran, where hornblende-controlled fractionation has been demonstrated. Major element mass balance modeling indicates RFC dominated by a fractionating assemblage made of Hbl52.0–52.5 + Pl44.1–44.2 + Ttn3.3–3.9 (phases are expressed on total crystallized assemblage). REE-FC modeling shows, instead, a lower degree of fractionation with respect to RFC models that is interpreted as due to hornblende and plagioclase resorption by the residual melt. Calculations demonstrate that fractionation of the Tschermak molecule can readily produce dacite and rhyolite magmas starting from a calc-alkaline andesite source (FC = ca. 30 %). In particular, the Tschermak molecule controls both the heavy rare earth elements (HREE) and light rare earth element (LREE) budgets in calc-alkaline differentiation trends.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号